Chapter 8: Multiple regression

 We can extend the regression model to allow several explanatory variables. The sample regression equation becomes

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \ldots + b_k X_k + e$$

Picture of the regression model

• With two X variables: $Y = b_0 + b_1 X_1 + b_2 X_2 + e$

Barrow, Statistics for Economics, Accounting and Business Studies, 5th edition © Pearson Education Limited 2009

Obtaining the regression equation

- The principles are the same: minimise the sum of squared errors (vertical distances from the regression plane)
- The calculations are more complex use a computer

Example: import demand equation

			GDP	Price of	RPI all
Year	Imports	GDP	deflator	imports	items
1973	18.8	74.0	24.6	21.5	25.1
1974	27.0	83.8	28.7	31.3	29.1
1975	28.7	105.9	35.7	35.6	36.1
:	:	:	:	:	:
2003	314.8	1110.3	195.6	106.7	191.7
2004	333.7	1176.5	201.0	106.2	197.4
2005	366.5	1224.7	205.4	110.7	202.9

Data transformed to real values

	Real		Real import
Year	imports	Real GDP	prices
1973	87.4	403.4	114.2
1974	86.3	391.6	143.4
1975	80.6	397.8	131.5
•	•	-	:
2003	295	761.2	74.2
2004	314.2	784.9	71.7
2005	331.1	799.6	72.7

Time series chart of data

XY chart: imports and GDP

XY chart: imports and prices

Regression results (via Excel)

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.98					
R Square	0.96					
Adjusted R Square	0.96					
Standard Error	13.24					
Observations	31					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	df 2	SS 129031.05	<i>M</i> S 64515.52	F 368.23	Significance F 7.82025E-21	
Regression Residual	<i>df</i> 2 28	SS 129031.05 4905.70	<i>M</i> S 64515.52 175.20	F 368.23	Significance F 7.82025E-21	
Regression Residual Total	df 2 28 30	SS 129031.05 4905.70 133936.75	<i>M</i> S 64515.52 175.20	F 368.23	Significance F 7.82025E-21	
Regression Residual Total	df 2 28 30	SS 129031.05 4905.70 133936.75	<i>M</i> S 64515.52 175.20	F 368.23	Significance F 7.82025E-21	
Regression Residual Total	df 2 28 30	SS 129031.05 4905.70 133936.75 Standard	<i>M</i> S 64515.52 175.20	F 368.23	Significance F 7.82025E-21	
Regression Residual Total	df 2 28 30 Coefficients	SS 129031.05 4905.70 133936.75 Standard Error	MS 64515.52 175.20 t Stat	F 368.23 P-value	Significance F 7.82025E-21 Lower 95%	Upper 95%
Regression Residual Total Intercept	df 28 28 30 Coefficients -172.61	SS 129031.05 4905.70 133936.75 Standard Error 73.33	MS 64515.52 175.20 <u>t Stat</u> -2.35	<i>F</i> 368.23 <i>P-value</i> 0.03	Significance F 7.82025E-21 Lower 95% -322.83	<i>Upper 95%</i> -22.39
Regression Residual Total Intercept Real GDP	df 2 28 30 30 <i>Coefficients</i> -172.61 0.59	SS 129031.05 4905.70 133936.75 Standard Error 73.33 0.06	MS 64515.52 175.20 <i>t Stat</i> -2.35 9.12	<i>F</i> 368.23 <i>P-value</i> 0.03 0.00	Significance F 7.82025E-21 Lower 95% -322.83 0.45	<i>Upper 95%</i> -22.39 0.72

Interpreting the coefficients

- Effect of GDP on imports: 0.59
- Better to calculate the elasticity:

$$\eta_{gdp} = b_1 \times \frac{gdp}{\overline{m}} = 0.59 \times \frac{536.4}{146.3} = 2.16$$

- A 1% rise in GDP leads to a 2% (approx) increase in imports
- The price elasticity is 0.04, by a similar calculation

Significance tests of the coefficients

- For GDP, t = 9.12, highly significant ($t_{28}^* = 2.048$ or 1.701 for a one tail test)
- For price, t = 0.13, not significant
- The price effect is the wrong sign, small and statistically not significant

Goodness of fit

- $R^2 = 0.96$. 96% of the variation in imports is explained by variation in GDP and prices
- Testing H_0 : $R^2 = 0$ we obtain

$$F = \frac{RSS/k}{ESS/(n-k-1)} = \frac{129,031.05/2}{4905.70/(31-2-1)} = 368.23$$

which is highly significant ($F^*_{2,28} = 3.34$)

An equivalent hypothesis

• Testing H_0 : $R^2 = 0$ is equivalent to testing that all the slope coefficients are zero, i.e.

$$H_0: \beta_1 = \beta_2 = 0$$
$$H_0: \beta_1 \neq \beta_2 \neq 0$$

• The null implies *neither* GDP *nor* price influences imports. As we have seen, this is rejected.

Prediction

- Predicting imports for 2002–3 we obtain:
 - 2004: \hat{m} = -172.61 + 0.59 × 784.9 + 0.05 × 71.7 = 290.0
 - 2005: \hat{m} = -172.61 + 0.59 × 799.6 + 0.05 × 72.7 = 298.6
- The error from the actual values is around 12%

Year	Actual	Forecast	Error
2004	314.2	290.0	24.2
2005	331.1	298.6	32.5

Estimating in logs

SUMMARY OUTPL	JT					
Regression Statistics						
Multiple R	0.99					
R Square	0.98					
Adjusted R Square	0.98					
Standard Error	0.05					
Observations	31					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	df 2	SS 5.31	<i>M</i> S 2.65	<i>F</i> 901.43	Significance F 3.82835E-26	
Regression Residual	df 2 28	SS 5.31 0.08246	MS 2.65 0.00	<i>F</i> 901.43	Significance F 3.82835E-26	
Regression Residual Total	df 2 28 30	SS 5.31 0.08246 5.39	MS 2.65 0.00	<i>F</i> 901.43	Significance F 3.82835E-26	
Regression Residual Total	<i>df</i> 2 28 30	SS 5.31 0.08246 5.39	MS 2.65 0.00	<i>F</i> 901.43	Significance F 3.82835E-26	
Regression Residual Total	<i>df</i> 2 28 30	SS 5.31 0.08246 5.39 Standard	MS 2.65 0.00	<i>F</i> 901.43	Significance F 3.82835E-26	
Regression Residual Total	df 2 28 30 Coefficients	SS 5.31 0.08246 5.39 Standard Error	MS 2.65 0.00 t Stat	F 901.43 P-value	Significance F 3.82835E-26 Lower 95%	Upper 95%
Regression Residual Total Intercept	<i>df</i> 28 30 <i>Coefficients</i> -3.60	SS 5.31 0.08246 5.39 Standard Error 1.65	MS 2.65 0.00 <u>t Stat</u> -2.17	<i>F</i> 901.43 <i>P-value</i> 0.04	Significance F 3.82835E-26 <i>Lower 95%</i> -6.98	<i>Upper 95%</i> -0.21
Regression Residual Total Intercept In GDP	df 28 30 Coefficients -3.60 1.66	SS 5.31 0.08246 5.39 Standard Error 1.65 0.15	<i>M</i> S 2.65 0.00 <i>t Stat</i> -2.17 11.31	<i>F</i> 901.43 <i>P-value</i> 0.04 0.00	Significance F 3.82835E-26 <i>Lower 95%</i> -6.98 1.36	<i>Upper 95%</i> -0.21 1.97

Interpreting the result

- GDP and price elasticities are 1.66 and -0.48 respectively
- Both are statistically significant
- Predicting for 2004 gives $\ln \hat{m} = -3.60 + 1.66 \times 6.67 - 0.41 \times 4.27 = 5.73$
- taking the anti-log gives $e^{5.73} = 308.2$

Predictions

 The prediction errors are now smaller: 1.9% and 4.8% in the two years

Year	Actual	Fitted	Error	% error
2004	314.2	308.2	6.0	1.9
2005	331.1	316.0	15.1	4.8

Autocorrelation

The pattern of errors (over time) should be random

Errors from log model

The Durbin – Watson statistic

Provides a test for autocorrelation

The Durbin – Watson statistic (continued)

$$\mathrm{DW} = \frac{0.0705}{0.0825} = 0.855$$

	e _t	e _{t-1}	e _t -e _{t-1}	$(e_t - e_{t-1})^2$	e_t^2
1973	0.0396	0.0000	0.0396		0.0016
1974	0.1703	0.0396	0.1308	0.0171	0.0290
1975	0.0401	0.1703	-0.1302	0.0170	0.0016
:	:	:	:	:	:
2002	0.0509	0.0548	-0.0039	0.0000	0.0026
2003	0.0215	0.0509	-0.0294	0.0009	0.0005
Totals				0.0705	0.0825

• For n = 30, k = 2, $d_L = 1.284$, $d_U = 1.567$, hence positive autocorrelation present

Consequences of autocorrelation

- Forecasts not optimal (too low in this case)
- Possible spurious regression (especially when variables are trended)
- *t* and *F* statistics biased upwards
- A warning to investigate further

Restricted and unrestricted models

- Restricted model (real price): $-\ln m = b_0 + b_1 \ln gdp + b_2 \ln p_m + e$
- Unrestricted model(nominal prices): - $\ln m = c_0 + c_1 \ln gdp + c_2 \ln P_M + c_3 \ln P + e$
- Test $H_0: c_2 = -c_3$

Slide 8.23 Restricted and unrestricted models (continued)

- Unrestricted model *must* fit better
- But if H_0 is true, restricted model should fit almost as well. Hence compare ESS_R with ESS_U
- Test statistic is:

$$F = \frac{(\text{ESS}_{\text{R}} - \text{ESS}_{\text{U}})/q}{\text{ESS}_{\text{U}}/(n-k-1)}$$

Slide 8.24 Restricted and unrestricted models (continued)

• The unrestricted model is estimated as:

 $\ln m_t = -8.77 + 2.31 \ln g dp_t - 0.20 \ln P_{Mt-1} + 0.02 \ln P_{t-1} + e_t$

with $ESS_U = 0.0272$. Hence we obtain:

$$F = \frac{(ESS_R - ESS_U)/1}{ESS_U/(31 - 3 - 1)} = \frac{(0.08246 - 0.02720)/1}{0.02720/(31 - 3 - 1)} = 54.85$$

• > F^{*1} ,28 = 4.21, so H₀ is rejected, perhaps surprisingly.

Summary

- Multiple regression extends the two variable model.
- Similar principles, different calculations
- Data transformations, e.g. logs, can be useful
- The adequacy of the model can be assessed by its forecasts and by checking for autocorrelation (amongst other things)
- Unrestricted and restricted models can be compared using an *F* test