Chapter 6: The \chi^2 and *F* **distributions**

- The χ^2 distribution is used to:
 - construct confidence interval estimates of a variance
 - compare a set of actual frequencies with expected frequencies
 - test for association between variables in a contingency table

The χ^2 and *F* distributions (continued)

- The *F* distribution is used to
 - test the hypothesis of equality of two variances
 - conduct an analysis of variance (ANOVA), comparing means of several samples

Case 1: Estimating a variance

- A random sample of size n = 20 yields a standard deviation of s = 25. How do we estimate the population variance?
- Point estimate: use $s^2 = 25^2 = 625$ which is unbiased (E(s^2) = σ^2)
- Interval estimate: we need the sampling distribution of s²...

The sampling distribution of s²

n-1 gives the degrees of freedom for the χ² distribution,
 19 in this example.

Limits to the confidence interval

For the 95% CI, we need the χ² values cutting off
 2.5% in each tail of the distribution

Excerpt from	Table A4:
--------------	-----------

ν	0.990	0.975	 0.050	0.025	0.010
1	0.000	0.001	 3.841	5.024	6.635
2	0.020	0.051	 5.991	7.378	9.210
3	0.115	0.216	 7.815	9.348	11.345
•	:	:	 :	:	:
18	7.015	8.231	 28.869	31.526	34.805
19	7.633	8.907	 30.144	32.852	36.191
20	8.260	9.591	 31.410	34.170	37.566

Tails of the χ^2_{19} distribution

Tails of the χ^2_{19} distribution (continued)

- We can be 95% confident that $(n-1)s^2/\sigma^2$ lies between 8.91 and 32.85 (for n = 20) $8.91 \le \frac{(n-1)s^2}{\sigma^2} \le 32.85$
- Rearranging:

$$\frac{(n-1)s^2}{32.85} \le \sigma^2 \le \frac{(n-1)s^2}{8.91}$$

• Substituting $s^2 = 625$ and n = 20:

 $361.5 \le \sigma^2 \le 1,332.8$

gives the 95% CI estimate

Slide 6.8 Case 2: Comparing actual versus expected frequencies

• 72 rolls of a die yield:

Score on die	1	2	3	4	5	6
Frequency	6	15	15	7	15	14

- From a fair die one would expect each number to come up 12 times.
- Is this evidence of a biased die?

The test statistic

- H₀: the die is fair
 H₁: the die is biased
- This can be tested using

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

• which has a χ^2 distribution with *k*-1 degrees of freedom, k = 6 in this case.

Calculating the test statistic

Score	Observed	Expected	0 – E	(<i>O</i> – <i>E</i>) ²	<u>(O – E)</u> ²	
	frequency (<i>O</i>)	frequency (<i>E</i>)			Ε	
1	6	12	-6	36	3.00	
2	15	12	3	9	0.75	
3	15	12	3	9	0.75	
4	7	12	-5	25	2.08	
5	15	12	3	9	0.75	
6	14	12	2	4	0.33	
Totals	72	72	0		7.66	

Calculating the test statistic (continued)

- The test statistic, 7.66, is less than the critical value of χ^2 with $\nu = 5$, 11.1
- Hence the null is not rejected, the variation is random
- Note the critical value cuts off 5% (not 2.5%) in the upper tail of the distribution. Only large values of the test statistic reject H₀

Case 3: Contingency tables

- The association between two variables can be analysed via the χ^2 distribution
 - Voting behaviour based on a sample of 200:

Social class	Labour	Conservative	Liberal Democrat	Total
A	10	15	15	40
В	40	35	25	100
С	30	20	10	60
Total	80	70	50	200

Slide 6.13 Are social class and voting behaviour related?

- H₀: no association between social class and voting behaviour
 - H₁: some association
- Expected values are calculated, based on the null of no association
- E.g. if there is no association, 40% (80/200) of every social class should vote Labour, i.e. 16 from class A, 40 from B and 24 from C

Observed and (expected) values

Social class	Labour	Conservative	Liberal Democrat	Total	
A	10(16)	15(14)	15(10)	40	
В	40(40)	35(35)	25(25)	100	
С	30(24)	20(21)	10(15)	60	
Total	80	70	50	200	

Calculating the test statistic

For $v = (rows-1) \times (columns-1) = 4$, the critical value of the χ^2 distribution is 9.50, so the null of no association is not rejected at the 5% significance level.

Testing two variances - the F distribution

- Do two samples have equal variances (i.e. come from populations with the same variance)?
- Data:

$$n_1 = 30$$
 $s_1 = 25$
 $n_2 = 30$ $s_2 = 20$

Slide 6.17 Testing two variances - the *F* distribution (continued)

•
$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 = \sigma_2^2$

or, equivalently

• $H_0: \sigma_1^2 / \sigma_2^2 = 1$ $H_1: \sigma_1^2 / \sigma_2^2 \neq 1$

The test statistic

• The test statistic is

$$\frac{s_1^2}{s_2^2} \sim F_{n_1 - 1, n_2 - 1}$$

- Evaluating this: $F = \frac{25^2}{20^2} = 1.5625$
- *F**_{29,29} = 2.09 >1.5625, so the null is not rejected.
 The variances may be considered equal.

Excerpt from Table A5(b): the F distribution

V 1	1	2	•••	24	30	40
v_2						
1	647.79	799.48		997.27	1001.40	1005.60
2	38.51	39.00		39.46	39.46	39.47
		:		:	:	:
28	5.61	4.22		2.17	2.11	2.05
29	5.59	4.20		2.15	2.09	2.03
30	5.57	4.18		2.14	2.07	2.01

(Using $v_1 = 30$ (rather than 29) makes little practical difference.)

One or two tailed test?

- As long as the larger variance is made the numerator of the test statistic, only 'large' values of *F* reject the null.
- The smallest possible value of F is 1, which occurs if the sample variances are equal. H₀ should not be rejected in this case.
- So, despite the " \neq " in H₁, this is a one tailed test.

Case 2: Analysis of variance (ANOVA)

- A test for the equality of several means, not just two as before.
- In our example we test for the equality of output of three factories, i.e. are they equally productive, on average, or not?

Data - daily output of three factories

Observation Factory 1		Factory 2	Factory 3		
1	415	385	408		
2	430	410	415		
3	395	409	418		
4	399	403	440		
5	408	405	425		
6	418	400			
7		399			

Chart of output

The hypothesis to test

- $H_0: \mu_1 = \mu_2 = \mu_3$ $H_1: \mu_1 \neq \mu_2 \neq \mu_3$
- Principle of the test: break down the total variance of all observations into the within factory variance and the between factory variance
- If the latter is large relative to the former, reject H₀

Sums of squares

Rather than variances, work with sums of squares

Three sums of squares

- Total sum of squares (TSS)
 - Sum of squares of all deviations from the overall average
- Between sum of squares (BSS)
 - Sum of squares of deviations of factory means from overall average
- Within sum of squares (WSS)
 - Sum of squares of deviations within each factory, from factory average

Test statistic

$$F = \frac{BSS/(k-1)}{WSS/(n-k)}$$

- The F statistic is the ratio of BSS to WSS, each adjusted by their degrees of freedom (k-1 and n-k)
- Large values of F ⇒ BSS large relative to WSS ⇒ between factories deviations large ⇒ reject H₀

The calculations

• TSS =
$$\sum_{j} \sum_{i} (x_{ij} - \overline{x})^2$$

(*j* indexes factories, *i* indexes observations)

• = $(415 - 410.11)^2 + (430 - 410.11)^2 + ... + (440 - 410.11)^2 + (425 - 410.11)^2 = 2,977.778$

(410.11 is the overall, or grand, average)

The calculations (continued)

• BSS = $\sum_{j} \sum_{i} (\overline{x}_i - \overline{x})^2$

where $\overline{\chi}_i$ is the average output of factory *i*

- = $6 \times (410.83 410.11)^2 + 7 \times (401.57 410.11)^2$ + $5 \times (421.2 - 410.11)^2 = 1,128.43$
- (410.83, 401.57, 421.11 are the three averages, respectively)

The calculations (continued)

- WSS = TSS BSS = 2,977.778 1,128.430
 = 1,849.348
- Alternatively, WSS = $\sum_{j} \sum_{i} (x_{ij} \overline{x}_i)^2$ = $(415 - 410.83)^2 + ... + (418 - 410.83)^2 + (385 - 401.57)^2 + ... + (399 - 401.57)^2 + (408 - 421.2)^2 + ... + (425 - 421.2)^2$ = 1,849.348

Result of the test

$$F = \frac{BSS/(k-1)}{WSS/(n-k)} = \frac{1128.43/(3-1)}{1849.348/(18-3)} = 4.576$$

- $F_{2,15}^* = 3.682$ (5% significance level)
- $F > F^*$ hence we reject H_0 . There are significant differences between the factories.

ANOVA table (Excel format)

SUMMARY				
Groups	Count	Sum	Average	Variance
Factory 1	6	2465	410.833	166.967
Factory 2	7	2811	401.571	70.6191
Factory 3	5	2106	421.2	147.7

ANOVA

Source of Variation	SS	df	MS	F	P-value F crit
Between Groups	1128.430	2	564.215	4.576	0.028 3.68
Within Groups	1849.348	15	123.290		
Total	2977.778	17			

Summary

- Use the χ^2 distribution to
 - Calculate the CI for a variance
 - Compare actual and expected values
 - Analyse a contingency table
- Use the *F* distribution to
 - Test for the equality of two variances
 - Test for the equality of several means