Chapter 3: Probability distributions

- We extend the probability analysis by considering random variables (usually the outcome of a probability experiment)
- These (usually) have an associated probability distribution
- Once we work out the relevant distribution, solving the problem is usually straightforward

Random variables

- Most statistics (e.g. the sample mean) are random variables
- Many random variables have well-known probability distributions associated with them
- To understand random variables, we need to know about probability distributions

Some standard probability distributions

- Binomial distribution
- Normal distribution
- Poisson distribution

When do they arise?

- Binomial when the underlying probability experiment has only two possible outcomes (e.g. tossing a coin)
- Normal when many small independent factors influence a variable (e.g. IQ, influenced by genes, diet, etc.)
- Poisson for rare events, when the probability of occurrence is low

The Binomial distribution

• Pr(*r* Heads in five tosses of a coin)

•
$$Pr(r=0) = (\frac{1}{2})^{0} \times (\frac{1}{2})^{5} \times 5C0 = \frac{1}{32} \times 1 = \frac{1}{32}$$

• $Pr(r=1) = (\frac{1}{2})^{1} \times (\frac{1}{2})^{4} \times 5C1 = \frac{1}{32} \times 5 = \frac{5}{32}$
• $Pr(r=2) = (\frac{1}{2})^{2} \times (\frac{1}{2})^{3} \times 5C2 = \frac{1}{32} \times 10 = \frac{10}{32}$
• $Pr(r=3) = (\frac{1}{2})^{3} \times (\frac{1}{2})^{2} \times 5C3 = \frac{1}{32} \times 10 = \frac{10}{32}$
• $Pr(r=4) = (\frac{1}{2})^{4} \times (\frac{1}{2})^{1} \times 5C4 = \frac{1}{32} \times 5 = \frac{5}{32}$
• $Pr(r=5) = (\frac{1}{2})^{5} \times (\frac{1}{2})^{0} \times 5C5 = \frac{1}{32} \times 1 = \frac{1}{32}$

Slide 3.6 The probability distribution of five tosses of a coin

Barrow, Statistics for Economics, Accounting and Business Studies, 5th edition © Pearson Education Limited 2009

Slide 3.7 The Binomial distribution with different parameters

• Eight tosses of an unfair coin $(P = \frac{1}{6})$

The Binomial 'family'

- Like other distributions, the Binomial is a family of distributions, members being distinguished by their different parameters.
- The parameters of the Binomial are:
 - P the probability of 'success'
 - *n* the number of trials
- Notation: *r* ~ B(*n*, *P*)

The Binomial 'family' (continued)

• $r \sim B(n, P)$ means

$$\Pr(r) = P^r \times (1 - P)^{(n-r)} \times nCr$$

$$\Pr(r) = (\frac{1}{2})^r \times (1 - \frac{1}{2})^{(5-r)} \times 5Cr$$

 and from this we can work out Pr(r) for any value of r.

Mean and variance of the Binomial

- From the diagram of the Binomial it is evident that we should be able to calculate its mean and variance
 - Mean = $n \times P$
 - Variance = $n \times P \times (1-P)$
- On average, you would expect 10 Heads from (n =) 20 tosses of a fair (P = ¹/₂) coin (10 = 20 × ¹/₂)

The Normal distribution

- Examples of Normally distributed variables:
 - IQ
 - Men's heights
 - Women's heights
 - The sample mean

The Normal distribution (continued)

- The Normal distribution is
 - bell shaped
 - symmetric
 - unimodal
 - and extends from
 x = -∞ to + ∞
 (in theory)

Parameters of the distribution

- The two parameters of the Normal distribution are the mean μ and the variance σ^2
 - $X \sim N(\mu, \sigma^2)$
- Men's heights are Normally distributed with mean 174 cm and variance 92.16
 - $x_M \sim N(174, 92.16)$
- Women's heights are Normally distributed with a mean of 166 cm and variance 40.32
 - $x_W \sim N(166, 40.32)$

Graph of men's and women's heights

Areas under the distribution

• What proportion of women are taller than 175 cm?

Areas under the distribution (continued)

- How many standard deviations is 175 above 166?
- The standard deviation is $\sqrt{40.32} = 6.35$, hence

$$z = \frac{175 - 166}{6.35} = 1.42$$

- so 175 lies 1.42 s.d's above the mean
- How much of the Normal distribution lies beyond 1.42 s.d's above the mean? Use tables...

Slide 3.17 Table A2 The standard Normal distribution

z	0.00	0.01	0.02	0.03	0.04	0.05	
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	
• • •	÷	:	:	:	:	• •	
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	
• •	:	:	:	• •	:	:	

Answer

- 7.78% of women are taller than 175 cm.
- Summary: to find the area in the tail of the distribution, calculate the *z*-score, giving the number of standard deviations between the mean and the desired height. Then look the *z*-score up in tables.

The distribution of the sample mean

• If samples of size *n* are randomly drawn from a Normally distributed population of mean μ and variance σ^2 , the sample mean is distributed as

$$\overline{x} \sim N(\mu, \sigma^2/n)$$

• E.g. if samples of 50 women are chosen, the sample mean is distributed

$$\overline{x} \sim N(166, 40.32/50)$$

Example

 What is the probability of drawing a sample of 50 women whose average height is > 168 cm?

$$z = \frac{168 - 166}{\sqrt{40.32/50}} = 2.23$$

 z = 2.23 cuts off 1.29% in the upper tail of the standard Normal distribution

The distributions of x and of \overline{x}

• Note the distinction between

$$x \sim N(\mu, \sigma^2)$$

and

$$\overline{x} \sim N(\mu, \sigma^2/n)$$

• The former refers to the population (or equivalently, a typical member of the population), the latter to the sample mean

The Central Limit Theorem

- If the sample size is large (n > 25) the population does not have to be Normally distributed, the sample mean is (approximately) Normal whatever the shape of the population distribution.
- The approximation gets better, the larger the sample size. 25 is a safe minimum to use.

The Poisson distribution

- The 'rare event' distribution
- Use in place of the Binomial where nP < 5

$$\Pr(x) = \frac{\mu^x e^{-\mu}}{x!}$$

• where μ is the mean of the distribution

Example

- A manufacturer claims a failure rate of 0.2% for its hard disk drives. In an assignment of 500 drives, what is the probability, none are faulty, one is faulty, etc?
- On average, 1 drive (0.2% of 500) should be faulty, so $\mu = 1$.

Example (continued)

• The probability of no faulty drives is

$$\Pr(x=0) = \frac{1^0 e^{-1}}{0!} = 0.368$$

• The probability of one faulty drive is

$$\Pr(x=1) = \frac{1^1 e^{-1}}{1!} = 0.368$$

and

$$\Pr(x=2) = \frac{1^2 e^{-1}}{2!} = 0.184$$

Graph of the Poisson distribution, $\mu = 1$

Example 2

 An ambulance station receives, on average, ten emergency calls over an eight hour period. What is the probability of no emergency calls in a 15 minute period?

•
$$\mu = 10 \times 15/480 = 0.3125$$

$$\Pr(x=0) = \frac{0.3125^{\circ} e^{-0.3125}}{0!} = 0.732$$

Summary

- Most statistical problems concern random variables which have an associated probability distribution
- Common distributions are the Binomial, Normal and Poisson (there many others)
- Once the appropriate distribution for the problem is recognised, the solution is relatively straightforward